
2
Storage Device API Description

Connection Functions . 2-2
NWSMListSDIs . 2-2
NWSMSDConnectToSDI . 2-3
NWSMSDReleaseSDI . 2-4

Initialization Functions . 2-5
NWSMSDListDevices . 2-5
NWSMSDListMedia . 2-6
NWSMSDSubjugateDevice 2-8
NWSMSDEmancipateDevice 2-10
NWSMSDSubjugateMedia 2-11
NWSMSDEmancipateMedia 2-13
NWSMSDMountMedia . 2-14
NWSMSDDismountMedia 2-17

Read/Write Functions . 2-20
NWSMSDOpenSessionForWriting 2-20
NWSMSDWriteSessionData 2-23
NWSMSDOpenSessionForReading 2-25
NWSMSDReadSessionData 2-27

Termination Functions . 2-30
NWSMSDCloseSession . 2-30
NWSMSDCancelDataTransfer 2-32

Miscellaneous Functions . 2-33
NWSMSDFormatMedia(NEW) 2-33
NWSMSDLabelMedia . 2-35
NWSMSDDeleteMedia . 2-37
NWSMSDReturnMediaHeader 2-39
NWSMSDPositionMedia 2-41
NWSMSDMoveMedia . 2-44
NWSMSDGetDeviceStatus 2-46
NWSMSDGetMediaStatus 2-47
NWSMSDGetDeviceCharacteristics 2-48
NWSMSDGetMediaCharacteristics 2-49
NWSMSDLabelDevice . 2-50
NWSMSDSetReadSDIDefaults 2-51
NWSMSDRegisterAlertRoutine 2-52
AlertRoutine(Engine Provided Function) 2-54
NWSMSDAlertResponse 2-56
NWSMSDConvertValueToMessage 2-58

Rev 2.0 2-1

Storage Device APIs

Connection Functions

CCODE

NWSMListSDIs -- Data Requestor API
(char *pattern,

NWSM_NAME_LIST **nameList);

Parameters

pattern (INPUT) Passes the pattern to search for. pattern can be set to "*",

a string with "*", or an exact match.

nameList (OUTPUT) Passes the address of a pointer and returns a list of

available local SDIs (see Appendix B for more information).

Note: Do not pass a structure.

Completion Codes

0x0 Successful

0xFFFEFFFD NWSMDR_OUT_OF_MEMORY

Type
Waiting

Prerequisites
None

Remarks
This function returns the specified available local SDIs. If an
SDI is not found, Successful is returned and nameList is set to
null. To select an SDI, select a name from the list and call
NWSMSDConnectToSDI.

Example

See Also
NWSMSDConnectToSDI

2-2 Rev 2.0

Storage Device API Description

CCODE

NWSMSDConnectToSDI -- Data Requestor API
(STRING sdiName,

STRING sdiUserName,

void *reserved,

UINT32 *connection);

Parameters

sdiName (INPUT) Passes a name that NWSMListSDIs returned.

sdiUserName (INPUT) Passes a user’s name.

reserved Reserved

connection (OUTPUT) Returns a connection handle that is used for all

subsequent SDI function calls.

Completion Codes

0x0 Successful

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFD NWSMDR_OUT_OF_MEMORY

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
None

Remarks
This function connects to the specified SDI.

Note: Under SMS for NetWare v4.0, SDI and SME must
be in the same file service.

See Also
NWSMSDReleaseSDI

Rev 2.0 2-3

Storage Device APIs

CCODE

NWSMSDReleaseSDI -- Data Requestor API
(UINT32 *connection);

Parameters

connection (INPUT) Passes a handle that NWSMSDConnectToSDI returned.

Completion Codes

0x0 Successful

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Remarks
On return, connection is set to zero.

Example

See Also
NWSMSDConnectToSDI

2-4 Rev 2.0

Storage Device API Description

Initialization Functions

CCODE

NWSMSDListDevices
(UINT32 connection,

NWSMSD_DEVICE_LIST *deviceList);

Parameters

connection (INPUT) Passes a handle that NWSMSDConnectToSDI returned.

deviceList (OUTPUT) Passes a pointer to an NWSMSD_DEVICE_LIST

structure and returns a list of devices available to the SDI. See

Appendix B for more information.

Completion Codes

0x0 Successful. If no devices are available, 0x0 is still

returned and deviceList is null.

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFFA NWSMSD_DEVICE_LIST_CHANGED

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
None

Remarks
This function returns a list of devices available through the
SDI. Some local devices may not be available to SDI, because
they may have been assigned to other engines. Set
deviceList.deviceID to 0 if the engine wants to retrieve all the
devices or set it to the desired device ID that the list should
begin with.

See Also
NWSMSDConnectToSDI
NWSMSDSubjugateDevice

Rev 2.0 2-5

Storage Device APIs

CCODE

NWSMSDListMedia
(UINT32 connection,

NWSMSD_DEVICE_HANDLE deviceHandle,

NWBOOLEAN reScan,

void *reserved0,

NWSMSD_MEDIA_LIST *mediaList,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that NWSMSDConnectToSDI returned.

deviceHandle (INPUT) Passes a device handle that NWSMSDMountMedia or

NWSMSDSubjugateDevice returned. If deviceHandle is zeroed,

SDI returns a list of all available media on all devices. If this

parameter is nonzero, SDI returns the media information available

on the specified device. For more information about

NWSMSD_DEVICE_HANDLE, see NWSMSDMountMedia.

reScan (INPUT) If set to TRUE, SDI updates its media list by rescanning all

available media. If set to FALSE, SDI returns its media list without

updating it.

reserved0 Reserved

mediaList (INPUT/OUTPUT) Returns a list of available media.

mediaList->totalCount is 0 if the list is empty (see Appendix B for

more information).

completionStatus (OUTPUT) Returns the same value as the function’s return value.

Completion Codes

0x0 Successful

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFFB NWSMSD_DEVICE_H_INVALID

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
None

2-6 Rev 2.0

Storage Device API Description

Remarks
This function returns a list of accessible media. The list
includes media mounted in any device that is listed by
NWSMSDListDevices. If no media are available, the

NWSMSDListMedia returns successfully.

SDI may not be informed of new media, removed media, etc.
Therefore, the engine must tell SDI to rescan if it suspects
there is a change in SDI’s environment.

See Also
NWSMSDConnectToSDI
NWSMSDListMedia
NWSMSDSubjugateMedia
NWSMSDSubjugateDevice
NWSMSDMountMedia

Rev 2.0 2-7

Storage Device APIs

CCODE

NWSMSDSubjugateDevice
(UINT32 connection,

NWSMSD_DEVICE_ID *deviceDesc,

UINT32 deviceReadWriteMode,

NWSMSD_DEVICE_HANDLE *deviceHandle,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

deviceDesc (INPUT) Passes the type of device the engine wants to use. If a

null is passed, SDI uses any available device. To select a specific

device, pass a pointer to an NWSMSD_DEVICE_ID structure that

was returned by NWSMSDListDevices.

deviceReadWriteMode (INPUT) Passes the desired access rights to the specified device.

These access rights are enforced on all operations associated with

connection, until the engine changes it by calling this function again.

For access rights definitions, see the read/write mode parameter

description of NWSMSDMountMedia.

deviceHandle (OUTPUT) deviceHandle is valid if the call is successful.

completionStatus (OUTPUT) Returns the same value as the function’s return value.

Completion Codes

0x0 Successful

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFF8 NWSMSD_DEVICE_NOT_EXIST

0xFFFCFFF9 NWSMSD_DEVICE_NOT_AVAIL

0xFFFCFFFB NWSMSD_DEVICE_H_INVALID

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
None

2-8 Rev 2.0

Storage Device API Description

Remarks
This function performs an "open" and a "reserve" on the device
for the requesting engine. This function is optional and is
used when an engine wants a specific device for future
operations.

See Also
NWSMSDSubjugateMedia
NWSMSDMountMedia
NWSMSDEmancipateDevice

Rev 2.0 2-9

Storage Device APIs

CCODE

NWSMSDEmancipateDevice
(UINT32 connection,

NWSMSD_DEVICE_HANDLE *deviceHandle);

Parameters

connection (INPUT) Passes a handle that NWSMSDConnectToSDI returned.

deviceHandle (INPUT) Passes a device handle that NWSMSDMountMedia or

NWSMSDSubjugateDevice returned.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFFB NWSMSD_DEVICE_H_INVALID

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
The engine must subjugate the device with
NWSMSDSubjugateDevice or NWSMSDMountMedia.
Also, the session must be closed and the media dismounted
before calling this function.

Remarks
This function releases and closes the device for the engine.
deviceHandle is invalid when this call returns.

See Also
NWSMSDDismountMedia
NWSMSDEmancipateMedia

2-10 Rev 2.0

Storage Device API Description

CCODE

NWSMSDSubjugateMedia
(UINT32 connection,

NWSMSD_MEDIA_ID *mediaDesc,

UINT32 mediaReadWriteMode,

void *reserved,

NWSMSD_MEDIA_HANDLE *mediaHandle,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that NWSMSDConnectToSDI returned.

mediaDesc (INPUT) Passes a description of a media that NWSMSDListMedia
returned. The media is described by setting mediaDesc’s fields to

the appropriate values. For more information about this structure,

see Appendix B.

mediaReadWriteMode (INPUT) Passes the access modes. These can be ORed together.

The access modes are enforced on all operations associated with

connection until this function is called again. If the media overflows,

the next media inherits the mode. For a description of the modes,

see the read/write mode parameter of NWSMSDMountMedia.

reserved Reserved

mediaHandle (OUTPUT) Returns a media handle. mediaHandle is valid if the call

is successful.

completionStatus (OUTPUT) Returns the same value as the function’s return value.

Completion Codes

0x0 Successful

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFE4 NWSMSD_MEDIA_NOT_EXIST

0xFFFCFFE5 NWSMSD_MEDIA_NOT_AVAIL

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Rev 2.0 2-11

Storage Device APIs

Prerequisites
None

Remarks
This function reserves the media for the engine and returns a
media handle for future media actions (e.g., mounting and
moving). The function or NWSMSDMountMedia must be
called before performing any action on the media (this
function is called by NWSMSDMountMedia if necessary).

Note: If no match is found, this call fails.

See Also
NWSMSDSubjugateDevice
NWSMSDMountMedia
NWSMSDEmancipateMedia

2-12 Rev 2.0

Storage Device API Description

CCODE

NWSMSDEmancipateMedia
(UINT32 connection,

NWSMSD_MEDIA_HANDLE *mediaHandle);

Parameters

connection (INPUT) Passes a handle that NWSMSDConnectToSDI returned.

mediaHandle (INPUT) Passes the media handle that NWSMSDMountMedia or

NWSMSDSubjugateMedia returned.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFF NWSMDR_INVALID_CONNECTION!

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
The media was subjugated by NWSMSDSubjugateMedia or

NWSMSDMountMedia.

Remarks
The function releases and closes the media reserved by the
engine. mediaHandle is invalid after the call returns.

See Also
NWSMSDDismountMedia
NWSMSDEmancipateMedia

Rev 2.0 2-13

Storage Device APIs

CCODE

NWSMSDMountMedia
(UINT32 connection,

NWSMSD_DEVICE_ID *deviceDesc,

UINT32 deviceReadWriteMode,

NWSMSD_MEDIA_ID *mediaDesc,

UINT32 mediaReadWriteMode,

void *reserved,

NWSMSD_DEVICE_HANDLE *deviceHandle,

NWSMSD_MEDIA_HANDLE *mediaHandle,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

deviceDesc (INPUT) Passes a description of the device to reserve. This

parameter is used if deviceHandle is zeroed. If deviceDesc is null

and deviceHandle is zero, SDI uses the default device specified by

NWSMSDSetReadSDIDefaults. If no default device is specified,

the first device that can perform the required operations is used. If

deviceDesc is not null, SDI passes it to

NWSMSDSubjugateDevice, which reserves the device.

deviceReadWriteMode (INPUT) Passes a device open mode bit map for the device to be

mounted. The modes can be ORed together. See "Remarks" for

more information.

mediaDesc (INPUT) This parameter is used only if mediaHandle is zeroed. If

mediaHandle is zeroed and mediaDesc is null, SDI uses the default

media specified by NWSMSDSetReadSDIDefaults. If no default

media is specified, the first media that can perform the required

operations is used. If mediaDesc is not null, SDI passes it to

NWSMSDSubjugateMedia, which reserves the media.

Note: See Appendix B for more information about this structure.

mediaReadWriteMode (INPUT) Passes a media open mode bit map for the media to be

mounted. The modes can be ORed together. If the media

overflows, the next media inherits these mode. See "Remarks" for

more information.

reserved Not Used

deviceHandle (INPUT/OUTPUT) Passes a device handle. If deviceHandle refers

to a device (handle is not zero), deviceDesc is ignored and the

device is mounted. If deviceHandle is zero, this function uses

deviceDesc to determine the device to use. The resulting device

handle is placed into this parameter.

Note: This field requires a pointer to a handle. Do not pass a

null pointer.

2-14 Rev 2.0

Storage Device API Description

mediaHandle (INPUT/OUTPUT) Passes a media handle. If mediaHandle refers to

a media (handle is not zero), this function ignores mediaDesc and

mounts the media. If mediaHandle is zeroed, this function uses

mediaDesc to determine the media to use. The resulting media

handle is placed into this parameter.

Note: This field requires a pointer to a handle. Do not pass a

null pointer.

completionStatus (OUTPUT) Not Used.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFF9 NWSMSD_DEVICE_NOT_AVAIL

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFE5 NWSMSD_MEDIA_NOT_AVAIL

0xFFFCFFF8 NWSMSD_DEVICE_NOT_EXIST

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFCFFEE NWSMSD_LOCATION_INVALID

0xFFFCFFFF NWSMSD_ACCESS_DENIED

0xFFFCFFE6 NWSMSD_MEDIA_MOUNTED

0xFFFCFFFB NWSMSD_DEVICE_H_INVALID

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFE4 NWSMSD_MEDIA_NOT_EXIST

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Rev 2.0 2-15

Storage Device APIs

Prerequisites
None

Remarks
This function performs all the remaining operations necessary
to make the media ready for other functions such as opening a
session, repositioning, labeling, deleting, etc. By using this
function, an engine can reserve the media and device as
follows:

• If the desired device/media is already subjugated, the
engine passes the appropriate handle(s) to this
function.

• If the engine sets all descriptions to null and handles
to zero, SDI uses the device and/or media specified by
NWSMSDSetReadSDIDefaults. If no defaults were
set, SDI uses the first device and/or media that can
perform the requested operation.

Set mediaReadWriteMode and/or deviceReadWriteMode to one
or more of the following:

NWSMSD_WRITE_MODE
Opens the media or device as write only.

NWSMSD_READ_MODE
Opens the media or device as read only.

See Also
NWSMSDSubjugateMedia
NWSMSDSubjugateDevice
NWSMSDCloseSession
NWSMSDDismountMedia

2-16 Rev 2.0

Storage Device API Description

CCODE

NWSMSDDismountMedia
(UINT32 connection,

NWSMSD_DEVICE_HANDLE *deviceHandle,

NWSMSD_MEDIA_HANDLE *mediaHandle,

UINT32 dismountMode,

NWSMSD_HEADER_BUFFER *mediaTrailerInfo,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that NWSMSDConnectToSDI returned.

deviceHandle (INPUT) Passes a handle that NWSMSDMountMedia or

NWSMSDSubjugateDevice returned.

mediaHandle (INPUT) Passes a handle that NWSMSDMountMedia or

NWSMSDSubjugateMedia returned.

dismountMode (INPUT) Passes an emancipation bit map that tells SDI how to

release a device/media. One device flag and one media flag must

be ORed together (see "Remarks" for more information).

mediaTrailerInfo (INPUT) Passes the SIDF data to be placed into the media trailer. If

this parameter is null, SDI places its own media trailer onto the

media. The engine decides what it wants to put into the media

trailer; SDI will fill in the rest. For more information about the media

trailer, see the System Independent Data Format document.

Note: SDI may reallocate this buffer.

completionStatus (OUTPUT) Returns NWSMSD_WAIT_PENDING.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFEC NWSMSD_MEDIA_FAILED

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites

Rev 2.0 2-17

Storage Device APIs

The media was mounted by using NWSMSDMountMedia.
The session must be closed before this function is called.

Remarks
This function releases the devices/media according to the
emancipation modes (the media is not ejected). This function
also causes SDI to write a media index if the engine wrote to
the media via NWSMSDWriteSessionData.

dismountMode must have one device mode flag and one media
mode flag set, and an optional trailer flag set. The flags are:

Device flags (choose only one):

NWSMSD_AUTO_EMANCIPATE_DEVICE
Emancipate only the device(s) that are subjugated
by NWSMSDMountMedia. This flag’s value is
zero.

NWSMSD_DONT_EMANCIPATE_DEVICE
Do not emancipate any device.

NWSMSD_UNCOND_EMANCIPATE_DEVICE
Emancipate all devices.

Media flags (choose only one):

NWSMSD_AUTO_EMANCIPATE_MEDIA
Emancipate only the media that are subjugated by
NWSMSDMountMedia. This flag’s value is 0.

NWSMSD_DONT_EMANCIPATE_MEDIA
Do not emancipate any media.

NWSMSD_UNCOND_EMANCIPATE_MEDIA
Emancipate all media.

Trailer flag (optional):

NWSMSD_WRITE_TRAILER
Write the media trailer before dismounting the
media. This is usually done by SDI when the media
overflows. We do not recommend that the engine do
this. If the engine writes the trailer, it should only
be done if the media set is being closed
permanently.

2-18 Rev 2.0

Storage Device API Description

See Also
NWSMSDMountMedia
NWSMSDCloseSession
NWSMSDEmancipateMedia
NWSMSDEmancipateDevice

Rev 2.0 2-19

Storage Device APIs

Read/Write Functions

CCODE

NWSMSDOpenSessionForWriting
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

NWSMSD_HEADER_BUFFER *sessionHeaderInfo,

NWSMSD_TRANSFER_BUF_INFO *transferBufferInfo,

NWSMSD_SESSION_HANDLE *sessionHandle,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes the handle that NWSMSDConnectToSDI returned.

mediaHandle (INPUT) Passes the media handle that was return by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

sessionHeaderInfo (INPUT) (Optional) Passes SIDF-formatted session header

information. If no session header is passed, SDI writes its own

session header onto the media. NWSMSetSessionHeaderInfo can

be used to format the data (see Storage Management Services

Utilities Library). For more information about FIDs and session

headers see System Independent Data Format.

Note: The engine decides what it needs to put into the header;

SDI will fill in the rest.

transferBufferInfo (INPUT/OUTPUT) Passes the engine’s specifications for the transfer

buffer’s header sizes, offsets, and sector sizes. On return, this

parameter contains SDI’s final word on these values (i.e., this

parameter is used for buffer size negotiation).

The buffer size returned by SDI is a maximum size, not an absolute

size; however, the header area must be the exact size specified.

This means that the engine can give to SDI a transfer buffer whose

size is anywhere between the header size (only a header is being

passed) and the maximum size.

For a discussion about transfer buffers, see Chapter One

"Introduction" and Storage Management Services Architecture.

sessionHandle (OUTPUT) Returns a session handle, but it is not valid until the

function returns successfully.

completionStatus (OUTPUT) See "Types" section for more information.

2-20 Rev 2.0

Storage Device API Description

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFC7 NWSMSD_HEADER_TOO_LARGE

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFFE NWSMSD_BUFFER_INCORRECT

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Nonwaiting. When the function returns, the engine must poll
completionStatus until it is not NWSMSD_WAIT_PENDING.
completionStatus will be set to one of the above completion
codes.

Prerequisites
NWSMSDMountMedia

Remarks
This function behaves like a file system’s open function. It
performs all the remaining operations necessary to make the
media ready for the write functions. If successful, a valid
handle is returned that is used for all subsequent calls.

This function repositions the media to the end of recorded
data and writes the session header contained in the transfer
buffer. The engine fills in the fields particular to it, and SDI
fills in the rest to make it SIDF-compliant.

NWSMSD_BUFFER_INCORRECT is returned when the
session header information:

• Is formatted incorrectly

• May contain the one or more of the following fields:

session header
offset to end
crc type

Rev 2.0 2-21

Storage Device APIs

transfer buffer size

• May not contain the required fields (see System

Independent Data Format for more information).

See Also
NWSMSDMountMedia
NWSMSDWriteSessionData

2-22 Rev 2.0

Storage Device API Description

CCODE

NWSMSDWriteSessionData
(UINT32 connection,

NWSMSD_CONTROL_BLOCK *controlBlock);

Parameters

connection (INPUT) Passes the handle that was returned by

NWSMSDConnectToSDI.

controlBlock (INPUT) Passes a control block and returns the location of the

transfer buffer on the media. The transfer buffer contains the data to

be written to the media. The engine must allocate memory for the

control block and transfer buffer (NWSMSDOpenSessionForWriting
returns the sizes for these buffers). See Appendix B for more

information.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFFE NWSMSD_BUFFER_INCORRECT

0xFFFCFFEC NWSMSD_MEDIA_FAILED

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFD6 NWSMSD_SESSION_H_INVALID

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFCFFCF NWSMSD_OS_ERROR

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFF7 NWSMSD_EARLY_WARNING

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Nonwaiting. When this function returns, the engine must
loop until controlBlock->completionStatus is not
NWSMSD_WAIT_PENDING. controlBlock->completionStatus
will then be set to one of the above completion codes.

Rev 2.0 2-23

Storage Device APIs

Prerequisites
NWSMSDOpenSessionForWriting

Remarks
This function writes the data onto the media. The engine
must set controlBlock->sessionDataType to the transfer
buffer’s data type. See Appendix B for more information.

Before putting the data into the transfer buffer’s data area,
the engine must put the data set information and data set
data into a record (see System Independent Data Format for
more details).

Caution: Under SDI 1.0 only, the maximum transfer
buffer is 256kb.

See Also
NWSMSDOpenSessionForWriting
NWSMSDCloseSession

2-24 Rev 2.0

Storage Device API Description

CCODE

NWSMSDOpenSessionForReading
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

NWSMSD_SESSION_ID *sessionDesc,

void *reserved0,

NWSMSD_HEADER_BUFFER *sessionHeader,

UINT32 *sectorSize,

UINT32 *transferBufferSize.

NWSMSD_SESSION_HANDLE *sessionHandle,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a media handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

sessionDesc (INPUT) (Optional) Passes a pointer to an NWSMSD_SESSION_ID

structure that describes the session to open. If it is null, the next

session is opened.

reserved0 Reserved

sessionHeader (OUTPUT) (Optional) SDI copies the session header into this

buffer. If a null pointer is passed, no information is returned.

NWSMGetSessionHeaderInfo can be used to deformat the session

header (see Storage Management Services Utilities Library).

Note: SDI may reallocate this buffer.

sectorSize (OUTPUT) Returns the smallest readable unit that SDI may put into

the transfer buffer. The engine memory allocation must be a

multiple of this size.

transferBufferSize (OUTPUT) Returns the maximum size of the transfer buffer (the

buffer size is a multiple of sectorSize). The engine must allocate a

transfer buffer of this size.

sessionHandle (OUTPUT) Returns a session handle, but it is not valid until the

engine’s callback function returns successfully.

completionStatus (OUTPUT) See "Type" section for more information.

Rev 2.0 2-25

Storage Device APIs

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFC7 NWSMSD_HEADER_TOO_LARGE

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Nonwaiting. When this function returns, the engine must
loop on completionStatus until it is not
NWSMSD_WAIT_PENDING. completionStatus will be set to
one of the above completion codes.

Prerequisites
The media must be mounted by NWSMSDMountMedia.

Remarks
This function behaves like a file system’s open function. It
performs all the remaining operations necessary to make the
media ready for the read function. If successful, this function
returns a valid handle that is used for all subsequent calls.

This function physically positions the media at the beginning
of the session by using sessionHeader to identify the recorded
session.

Example

See Also
NWSMSDMountMedia
NWSMSDReadSessionData

2-26 Rev 2.0

Storage Device API Description

CCODE

NWSMSDReadSessionData
(UINT32 connection,

NWSMSD_CONTROL_BLOCK *controlBlock);

Parameters

connection (Input) Passes the handle that was returned by

NWSMSDConnectToSDI.

controlBlock (INPUT/OUTPUT) Points to a control block. The engine must

allocate memory for the control block and the transfer buffer. The

size of the transfer buffer was returned by

NWSMSDOpenSessionForReading.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFFD NWSMSD_BUFFER_SIZE_INVALID

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFD6 NWSMSD_SESSION_H_INVALID

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFCF NWSMSD_OS_ERROR

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Nonwaiting. When this function returns, the engine must poll
controlBlock->completionStatus until it is not
NWSMSD_WAIT_PENDING. controlBlock->completionStatus

will then be set to one of the above completion codes.

Prerequisites
NWSMSDOpenSessionForReading.

Remarks
This function reads data from the session associated with
connection into controlBlock’s transfer buffer. Before
returning the completion status to the engine, SDI ensures

Rev 2.0 2-27

Storage Device APIs

that it has the correct buffer by comparing the block header
against a buffer identification structure.

Note: Before the engine sends the data set data back to
the TSA, the data must be taken out of the record or
subrecord sections. For more information, see System
Independent Data Format.

Caution: Under SDI 1.0 only, the maximum transfer

buffer is 256kb.

SDI sets controlBlock->sessionDataType to the type of data
being read. The data type was set by the engine when
NWSMSDWriteSessionData was called. For more
information about the data types, see
NWSMSD_CONTROL_BLOCK in Appendix B.

The engine gets the session trailer, session index, etc., by
continually issuing read calls as shown in the following
statements. If the last block of data is about to be read from
the media, the following read sequences show what is
retrieved as the engine issues read calls (each numbered line
represents one NWSMSDReadSessionData function call).

Note: Some sections shown below are not required and
consequently will not be seen when a read call is issued.
sessionDataType, sectorsNotTransfer, and transferBuffer
are fields in controlBlock.

1 File system data in the transfer buffer
sessionDataType = NWSMSD_TSA_DATA
sectorsNotTransfer = 0

2 File system data in the transfer buffer
sessionDataType = NWSMSD_END_OF_TSA_DATA
sectorsNotTransfer = a nonzero value

4 Session trailer data in the transfer buffer
sessionDataType = NWSMSD_SESSION_TRAILER
sectorsNotTransfer = 0

6 Session index data in the transfer buffer
sessionDataType = NWSMSD_SESSION_INDEX
sectorsNotTransfer = 0

7 Session index data in the transfer buffer
sessionDataType = NWSMSD_SESSION_INDEX
sectorsNotTransfer = a nonzero value

2-28 Rev 2.0

Storage Device API Description

9 Media index data in the transfer buffer
sessionDataType = NWSMSD_MEDIA_INDEX
sectorsNotTransfer = 0

10 Media index data in the transfer buffer
sessionDataType = NWSMSD_MEDIA_INDEX
sectorsNotTransfer = a nonzero value

11 No data in the transfer buffer
sessionDataType = NWSMSD_END_OF_SESSION
sectorsNotTransfer = 0

See Also
NWSMSDOpenSessionForReading
NWSMSDCloseSession

Rev 2.0 2-29

Storage Device APIs

Termination Functions

CCODE

NWSMSDCloseSession
(UINT32 connection,

NWSMSD_SESSION_HANDLE *sessionHandle,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes the handle that was returned by

NWSMSDConnectToSDI.

sessionHandle (INPUT) Passes a session handle to close and invalidate.

completionStatus (OUTPUT) See section "Types" for more information.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFD6 NWSMSD_SESSION_H_INVALID

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFFFFFF NWSMSD_WAITING_PENDING

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Nonwaiting. When this function returns, the engine must poll
completionStatus until it is not NWSMSD_WAIT_PENDING.
completionStatus will be set to one of the above completion
codes.

Remarks
This function closes a read or write session. For a write
session, if the session index is already written, this function
writes a media index onto the media, then closes the session
(at SDI’s discretion). If the session index has not been
written, this function writes a session trailer, writes the
media index, and then closes the session (see System

Independent Data Format for more information about media
index, session index, and session trailer).

2-30 Rev 2.0

Storage Device API Description

Note: Once the session index is written, SDI prevents any
action on the medium from any engine, until this function
is called.

If NWSMSD_INVALID_PARAMETER is returned, it could be
that sessionHandle was never initialized.

See Also
NWSMSDDismountMedia

Rev 2.0 2-31

Storage Device APIs

CCODE

NWSMSDCancelDataTransfer
(UINT32 connection,

NWSMSD_CONTROL_BLOCK *controlBlock);

Parameters

connection (INPUT) Passes the handle that was returned by

NWSMSDConnectToSDI.

controlBlock (INPUT) Passes a control block that is used by

NWSMSDReadSessionData or NWSMSDWriteSessionData.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
The session was opened by
NWSMSDOpenSessionForReading or
NWSMSDOpenSessionForWriting.

Remarks
This function cancels the data transfer associated with
conttrolBlock.

2-32 Rev 2.0

Storage Device API Description

Miscellaneous Functions

CCODE

NWSMSDFormatMedia(NEW)
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

UINT32 operationType,

UINT32 numberOfPartitions,

CAPACITY *partitionSizeArray,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

operationType (INPUT) Passes one or more of the following bit mapped

commands:

NWSMSD_FORMAT_MEDIA (0x00000001)

Perform a low-level format on the media.

NWSMSD_PARTITION_MEDIA (0x00000002)

Partition the media. Partitioning occurs after formatting if

formatting is also specified.

numberOfPartitions (INPUT) Number of partitions specified in partitionSizeArray.

partitionSizeArray (INPUT) Passes an array of partition sizes to create on the media.

The position of each element corresponds to a logical partition

number (i.e., element 0 is logical partition 0 and element 1 is logical

partition 1). The last partition must contain a -1 (see remarks for

more information).

Note: The order of the logical partitions, may not be the physical

layout of the partitions on the media.

completionStatus (OUTPUT) Returns the same value as the function’s return value.

Completion Codes

0x0 Successful

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFE2 NWSMSD_MEDIA_NOT_MOUNTED

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

Rev 2.0 2-33

Storage Device APIs

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
Call NWSMSDMountMedia with the mode set to write
access.

Remarks
This function formats a medium. The engine must know how
the physical partitions are arranged on the media, because the
-1 for partitionSizeArray must be in the array element that
represents the last physical partition.

For example, if medium started with physical partition 2 and
ended with physical partition 0, the partition size array
should be set as follows:

partitionSizeArray[0] = -1;
partitionSizeArray[1] = desired size;
partitionSizeArray[2] = desired size;

If the medium started with physical partition 0 and ended
with physical partition 2, the array should be set as follows:

partitionSizeArray[0] = desired size;
partitionSizeArray[1] = desired size;
partitionSizeArray[2] = -1;

Note: The size of the last partition (represented by the
element with -1) is the medium’s size minus the combined
sizes of the other partitions.

See Also
NWSMSDLabelMedia

2-34 Rev 2.0

Storage Device API Description

CCODE

NWSMSDLabelMedia
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

NWSMSD_HEADER_BUFFER *mediaHeaderInfo,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a media handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

mediaHeaderInfo (INPUT) Passes the media header information. The engine is

required to pass a media label and media number (all other

information is optional). This data must be formatted according to

SIDF’s specifications.

NWSMSetMediaHeaderInfo can format the media header

information (see Storage Management Services Library). For more

information about media headers, see System Independent Data

Format.

completionStatus (OUTPUT) Returns the same value as the function’s return value.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFE2 NWSMSD_MEDIA_NOT_MOUNTED

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFFE NWSMSD_BUFFER_INCORRECT

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFDC NWSMSD_NO_WRITE_MODE

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFC7 NWSMSD_HEADER_TOO_LARGE

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFFFFFF NWSMSD_WAIT_PENDING

Rev 2.0 2-35

Storage Device APIs

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
Call NWSMSDMountMedia with the mode set to
NWSMSD_WRITE_MODE.

Remarks
This function places a media header onto an empty media.
Any previous media header must be erased, or this function
will fail. The transfer buffer contains the media header. SDI
will add any necessary FIDs to make the media comply with
the SIDF specifications.

NWSMSD_BUFFER_INCORRECT will be returned if
mediaHeaderInfo:

• Is formatted incorrectly

• Contains the one or more of the following fields:
media header
offset to end
revision level
physical sector size

• Does not contain the required fields (see System

Independent Data Format for more information).

See Also
NWSMSDMountMedia
NWSMSDDeleteMedia
NWSMSDLabelDevice

2-36 Rev 2.0

Storage Device API Description

CCODE

NWSMSDDeleteMedia
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

UINT32 deleteMode,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a media handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

deleteMode (INPUT) This parameter is not currently implemented, but will be

used in future releases of SDI.

completionStatus (OUTPUT) Returns the same value as the function’s return value.

Completion Codes

0x0 Successful

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFDC NWSMSD_NO_WRITE_MODE

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFE2 NWSMSD_MEDIA_NOT_MOUNTED

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
Call NWSMSDMountMedia with the mode set to write
access.

Remarks

Rev 2.0 2-37

Storage Device APIs

This function removes the media header from the media,
which makes it an empty media.

See Also
NWSMSDLabelMedia

2-38 Rev 2.0

Storage Device API Description

CCODE

NWSMSDReturnMediaHeader
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

NWBOOLEAN verifyHeader,

NWSMSD_HEADER_BUFFER *mediaHeader,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a media handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

verifyHeader (INPUT) If verifyHeader is set to TRUE, SDI rereads and verifies the

media header. If the media header does not match SDI’s copy,

NWSMSD_HEADER_MISMATCH is returned.

mediaHeader (OUTPUT) Returns the media header. If no media header is

present, this function returns successfully and sets

mediaHeader->headerSize to 0.

completionStatus (OUTPUT) Returns one of the completion codes.

Completion Codes

0x0 Successful

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFE2 NWSMSD_MEDIA_NOT_MOUNTED

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFE5 NWSMSD_MEDIA_NOT_AVAIL

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFCFFD9 NWSMSD_NOT_SMS_MEDIA

0xFFFCFFF5 NWSMSD_MEDIA_CHANGED

0xFFFEFFFF NWSMDR_INVALID_CONNECTION!

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Rev 2.0 2-39

Storage Device APIs

Prerequisites
The media must be subjugated if verifyHeader is TRUE.

Remarks
This function returns a media header.

See Also
NWSMSDLabelMedia

2-40 Rev 2.0

Storage Device API Description

CCODE

NWSMSDPositionMedia
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

NWSMSD_MEDIA_POSITION *mediaPosition,

UINT32 positionMode,

void *reserved0,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a media handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

mediaPosition (INPUT/OUTPUT) Passes the media positioning values.

positionMode determines whether this is an input or output structure

(see the Remarks section. Also see Appendix B for more

information).

positionMode (INPUT) Passes a positioning mode (see the Remarks section).

reserved Reserved

completionStatus (OUTPUT) Returns the same value as the function’s return value.

Rev 2.0 2-41

Storage Device APIs

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFD7 NWSMSD_POSITION_NOT_FOUND

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFDA NWSMSD_OUT_OF_MEMORY

0xFFFCFFEC NWSMSD_MEDIA_FAILED

0xFFFCFFE5 NWSMSD_MEDIA_NOT_AVAIL

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFD8 NWSMSD_POSITION_INVALID

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
NWSMSDMountMedia.

Remarks
This function positions or reports the current position of the
media. NWSMSD_POSITION_INQUIRE is the only mode
that does not reposition the media. All other modes attempt
to reposition the media. The following list shows the media
positioning modes:

NWSMSD_POSITION_INQUIRE (0x00000001)
Places the current media position into mediaPosition. All
values use the absolute member of the union (i.e., C’s
union).

NWSMSD_POSITION_SECTOR_ABS (0x00000007)
Positions the media forward
mediaPosition.sectorAddress.absolute sectors from the
beginning of the session.

2-42 Rev 2.0

Storage Device API Description

NWSMSD_POSITION_PARTITION_ABS (0x00000008)
Positions the media at mediaPosition->partitionNumber.
This is an absolute value and is zero-indexed (i.e., starts
from zero).

NWSMSD_REWIND_MEDIA (0x0000000A)
Rewind media to the beginning of the partition.

NWSMSD_POSITION_END_OF_MEDIA (0x0000000C)
Positions the media at the end of SIDF recorded media
(logical end of media). If the device cannot sense logical
end of media, NWSMSD_UNSUPPORTED_FUNCTION is
returned.

Example

Rev 2.0 2-43

Storage Device APIs

CCODE

NWSMSDMoveMedia
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

UINT32 moveMode,

NWSMSD_MEDIA_LOCATION *mediaLocation,

CCODE *completionStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a media handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

moveMode (INPUT) Get the media’s current position or move the media (see

the Remarks section for more information).

mediaLocation (INPUT/OUTPUT) Passes the new media location or returns the

location of the media.

completionStatus (OUTPUT) Returns the same value as the function’s return value.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFFF NWSMSD_ACCESS_DENIED

0xFFFCFFE6 NWSMSD_MEDIA_MOUNTED

0xFFFCFFEE NWSMSD_LOCATION_INVALID

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFD0 NWSMSD_UNSUPPORTED_SERVICE

0xFFFCFFE5 NWSMSD_MEDIA_NOT_AVAIL

0xFFFCFFCD NWSMSD_IO_ABORT_SUCCESSFUL

0xFFFCFFCB NWSMSD_DRIVER_UNSUPPORT_FUNC

0xFFFCFFE4 NWSMSD_MEDIA_NOT_EXIST

0xFFFFFFFF NWSMSD_WAIT_PENDING

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

2-44 Rev 2.0

Storage Device API Description

Type
Waiting

Prerequisites
None

Remarks
Under SMS for NetWare v4.0 this function only ejects the
media. Set moveMode to:

NWSMSD_MOVE_EJECT (0x00000004)
If the device was subjugated or mounted with a
relation type1 of
NWSMSD_DEVICE_SINGLE_MEDIA, the media is
ejected.

If the engine tries to move a mounted medium, this function
returns NWSMSD_MEDIA_MOUNTED. If the media is not
subjugated, NWSMSD_ACCESS_DENIED is returned.

1
Relation type is the relation of the device to the media. See structure NWSMSD_DEVICE_ID for more

information.

Rev 2.0 2-45

Storage Device APIs

CCODE

NWSMSDGetDeviceStatus
(UINT32 connection,

NWSMSD_DEVICE_HANDLE deviceHandle,

NWSMSD_DEVICE_ID *deviceDesc,

NWSMSD_DEVICE_STATUS *deviceStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

deviceHandle (INPUT) Passes a device handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateDevice. If

deviceHandle is not zeroed, SDI returns the status of the device

specified by deviceHandle. If deviceHandle is zero, SDI returns the

status of the device described by deviceDesc.

deviceDesc (INPUT) If deviceHandle is zeroed, the function searches for a

device that matches uniqueDeviceID of NWSMSD_DEVICE_ID.

See Appendix B for more information.

deviceStatus (OUTPUT) Returns the device’s status (see

"NWSMSD_DEVICE_STATUS" in Appendix B for more information).

Completion Codes

0x0 Successful

0xFFFCFFFB NWSMSD_DEVICE_H_INVALID

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
If deviceHandle is not zero, the device must be subjugated by
NWSMSDSubjugateDevice or NWSMSDMountMedia.

Remarks
This function returns the status of the requested device.

2-46 Rev 2.0

Storage Device API Description

CCODE

NWSMSDGetMediaStatus
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

NWSMSD_MEDIA_ID *mediaDesc,

NWSMSD_MEDIA_STATUS *mediaStatus);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a media handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia. If

mediaHandle is not zero, SDI returns the status of the media

specified by mediaHandle. If mediaHandle is zero, SDI returns the

status of the device described by mediaDesc.

mediaDesc (INPUT) Passes a description of the type of media to look for. If

mediaHandle is zeroed, the function searches for a media that

matches the non-NWSMSD_DONT_CARE values of mediaDesc. If

the description applies to more than one media, the first medium is

returned. For more information about this structure, see

Appendix B.

mediaStatus (OUTPUT) Returns the device’s status (see Appendix B for more

information).

Completion Codes

0x0 Successful

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
If mediaHandle is not zero, subjugate the media with
NWSMSDSubjugateMedia or NWSMSDMountMedia.

Remarks
This function returns the status of the requested media.

Rev 2.0 2-47

Storage Device APIs

CCODE

NWSMSDGetDeviceCharacteristics
(UINT32 connection,

NWSMSD_DEVICE_HANDLE deviceHandle,

NWSMSD_DEVICE_ID *deviceCharacteristics);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

deviceHandle (INPUT) Passes a device handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateDevice.

deviceCharacteristics (OUTPUT) Passes a pointer to a structure and returns the device’s

characteristics (see the Appendix B for more information).

Completion Codes

0x0 Successful

0xFFFCFFFB NWSMSD_DEVICE_H_INVALID

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
The device was subjugated with NWSMSDSubjugateDevice

or NWSMSDMountMedia.
Remarks

This function returns the characteristics of the specified
device.

2-48 Rev 2.0

Storage Device API Description

CCODE

NWSMSDGetMediaCharacteristics
(UINT32 connection,

NWSMSD_MEDIA_HANDLE mediaHandle,

NWSMSD_MEDIA_ID *mediaCharacteristics);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

mediaHandle (INPUT) Passes a media handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateMedia.

mediaCharacteristics (OUTPUT) Passes a pointer to a structure and returns the media’s

characteristics.

Completion Codes

0x0 Successful

0xFFFCFFEB NWSMSD_MEDIA_H_INVALID

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
The engine must subjugate the media with
NWSMSDSubjugateMedia or NWSMSDMountMedia.

Remarks
This function returns the characteristics of a specified media.

Rev 2.0 2-49

Storage Device APIs

CCODE

NWSMSDLabelDevice
(UINT32 connection,

NWSMSD_MEDIA_HANDLE deviceHandle,

BUFFERPTR deviceLabel,);

Parameters

connection (INPUT) Passes a handle that was returned by

NWSMSDConnectToSDI.

deviceHandle (INPUT) Passes a device handle that was returned by

NWSMSDMountMedia or NWSMSDSubjugateDevice.

deviceLabel (INPUT/OUTPUT) Passes a NWSM_MAX_DEVICE_LABEL_LEN

buffer containing the device’s label. After the device is renamed,

SDI will query the device for its name and copy it into this buffer for

verification by the engine.

Completion Codes

0x0 Successful

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFFF NWSMSD_ACCESS_DENIED

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFFB NWSMSD_DEVICE_H_INVALID

0xFFFCFFD4 NWSMSD_TIME_OUT

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFE NWSMDR_INVALID_PARAMETER

Type
Waiting

Prerequisites
None

Remarks
This function provides a means of giving the device a user
friendly name. Unless this function is called, SDI uses the
name it retrieved from the device via the Media Manager.
This name is usually not very "user-friendly."

2-50 Rev 2.0

Storage Device API Description

CCODE

NWSMSDSetReadSDIDefaults
(UINT32 connection,

NWSMSD_SDI_DEFAULTS *sdiDefaults,

NWBOOLEAN setReadMode);

Parameters

connection (INPUT) Passes the handle that was returned by

NWSMSDConnectToSDI.

sdiDefaults (INPUT/OUTPUT) Passes the new defaults, or returns the current

default settings for each SDI-nonwaiting function.

setReadMode (INPUT) If set to TRUE, SDI reads sdiDefaults into its default

settings. If set to FALSE, SDI writes its default settings into

sdiDefaults .

Completion Codes

0x0 Successful

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
None

Remarks
This function provides a way for the engine to specify or
discover:

• The currently defined default devices.

• The timeout values for each SDI waiting function (see
the NWSMSD_SDI_DEFAULTS structure).

• The default media.

The defaults apply only to the current connection.

Rev 2.0 2-51

Storage Device APIs

CCODE

NWSMSDRegisterAlertRoutine
(UINT32 connection,

UINT32 alertType,

NWSMSDAlertRoutine *alertRoutine);

Parameters

connection (INPUT) Passes the handle that was returned by

NWSMSDConnectToSDI.

alertType (INPUT) Passes a bit map that describes the alert message types

the engine wants to know about (see "Remarks" for more

information).

alertRoutine (INPUT) Passes a function pointer that SDI calls when a qualifying

alert occurs (see "NWSMSDAlertRoutine" in this chapter for more

information).

Note: Pass a null function pointer to permanently disable

previously set alerts.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
None

Remarks
This function registers an engine’s alert routine. alertType

indicates the type of messages filters an engine wants to
receive.

Note: Alerts are not multiplexed (i.e., the engine is
notified of only one alert at a time).

The alert types are:

NWSMSD_NEW_MEDIA (0x00000001)
SDI retrieved the next media during a read or write
session. AlertRoutine should not call
NWSMSDAlertResponse, because this is only a
notification.

2-52 Rev 2.0

Storage Device API Description

NWSMSD_DELETED_MEDIA (0x00000002)
The media for this mediaHandle was deleted from
underneath SDI. The mediaHandle is no longer valid.

NWSMSD_NEW_MEDIA_NEEDED (0x00000004)
SDI ran out of media and needs user input. When a
medium is inserted, alertRoutine must call
NWSMSDAlertResponse to tell SDI of the event.

NWSMSD_NEW_MEDIA_NOT_BLANK (0x00000008)
The new media has a media header. A media without
a header is needed.

NWSMSD_NEW_MEDIA_INCORRECT (0x00000010)
The media being spanned to is not the correct media.
AlertRoutine should not call
NWSMSDAlertResponse. AlertRoutine will be

called again with NWSMSD_NEW_MEDIA_NEEDED.

NWSMSD_DEVICE_ONLINE (0x00000080)

NWSMSD_DEVICE_OFFLINE (0x00000100)

See Also
AlertRoutine
NWSMSDAlertResponse

Rev 2.0 2-53

Storage Device APIs

NWSMSDAlertRoutine*

AlertRoutine(Engine Provided Function)
(UINT32 alertHandle,

UINT32 alertType,

UINT32 uniqueID,

UINT32 alertNumber,

STRING alertString);

Parameters

alertHandle (INPUT) SDI passes this handle into this function when calling this

function.

alertType (OUTPUT) Returns the engine’s alert bit map to AlertRoutine.

uniqueID (OUTPUT) Returns the device’s ID that caused the alert.

alertNumber (OUTPUT) Returns a number that should be used with alertString

(see the Remarks section for more information).

alertString (OUTPUT) Returns a double-byte string2 that the engine may

display as part of its alert handling. Sometimes a null string is

returned.

Note: It is assumed that when AlertRoutine returns to SDI, that

string ’s buffer is available for reuse or removal by SDI.

Therefore, we advise that AlertRoutine copies string before

returning to SDI.

Type
Waiting

Prerequisites
None

Remarks
SDI calls this function to notify the engine of an alert (this
function is written by the engine developer). The engine
should call NWSMSDAlertResponse to inform SDI of the
engine’s reaction to the alert.

alertNumber and alertString are used to form a complete
message. For example, if alertString is "Device hardware
failure," alertNumber returns the device’s number. Both
parameters could be used as follows:

printf("%s, Device Number: 0x%x\n", alertString,
alertNumber);

2
Double byte strings have characters that use two bytes instead of one. This is needed to be NetWare

v4.0 compliant. For more information, see the CLIB documentation.

2-54 Rev 2.0

Storage Device API Description

See Also
NWSMSDRegisterAlertRoutine
NWSMSDAlertResponse

Rev 2.0 2-55

Storage Device APIs

CCODE

NWSMSDAlertResponse
(UINT32 connection,

UINT32 alertHandle,

UINT32 alertType,

UINT32 alertResponseValue);

Parameters

connection (INPUT) Passes the handle that was returned by

NWSMSDConnectToSDI.

alertHandle (INPUT) Passes the handle returned by AlertRoutine.

alertType (INPUT) This is the same bit map defined in by

NWSMSDRegisterAlertRoutine. It informs the calling module of

the alert type being responded to.

alertResponseValue (INPUT) Passes the engine’s response to the alert (see the remarks

for more information).

Completion Codes

0x0 Successful

0xFFFCFFF1 NWSMSD_INVALID_PARAMETER

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

Type
Waiting

Prerequisites
None

Remarks
The engine calls this function to tell SDI what SDI needs to
do in response to an alert type. The following responses are
defined:

2-56 Rev 2.0

Storage Device API Description

Alert Type Response (alertResponseValue)

NWSMSD_NEW_MEDIA_NEEDED NWSMSD_NEW_MEDIA_CONTINUE (0x00000000)
A new media has been inserted, and SDI needs
to mount it.

NWSMSD_NEW_MEDIA_ABORT (0x00000001)
No media are available, abort spanning.

NWSMSD_MEDIA_NOT_BLANK NWSMSD_NEW_MEDIA_CONTINUE (0x00000000)
A new media has been inserted; SDI needs to
mount it.

NWSMSD_NEW_MEDIA_ABORT (0x00000001)
Do not use this medium; dismount it and
request a new one.

Rev 2.0 2-57

Storage Device APIs

CODE

NWSMSDConvertValueToMessage
(UINT32 connection,

UINT32 valueType,

UINT32 value,

UINT32 stringLen,

STRING string);

Parameters

connection (INPUT) Passes the handle that was returned by

NWSMSDConnectToSDI.

valueType (INPUT) Passes the value’s type to be converted (e.g., media type).

See the Remarks section for more information.

value (INPUT) Passes the value to be converted to a string.

stringLen (INPUT) Passes string’s buffer size. If the message is longer than

the buffer, it is truncated.

string (OUTPUT) Passes a stringLen byte buffer and returns the string

associated with value.

Completion Codes

0x0 Successful

0xFFFCFFF3 NWSMSD_INVALID_CONNECTION

0xFFFCFFF4 NWSMSD_INTERNAL_ERROR

0xFFFEFFFB NWSMDR_UNSUPPORTED_FUNCTION

0xFFFEFFFF NWSMDR_INVALID_CONNECTION

Type
Waiting

Prerequisites
None

Remarks
This function translates an SDI value (i.e., a constant
beginning with NWSMSD_) into a language-enabled (double
byte) string3 that can be sent to a console, an error log, etc.

Set valueType to one of the following:

NWSMSD_VALUE_TYPE_MEDIA (0x00000001)
Set value to a media type.

3
Double byte strings have characters that use two bytes instead of one. This is needed to be compliant

with NetWare’s current environment requirements. For more information, see your CLIB documentation.

2-58 Rev 2.0

Storage Device API Description

NWSMSD_VALUE_TYPE_DEVICE (0x00000002)
Set value to a device type.

NWSMSD_VALUE_TYPE_OBJECT (0x00000003)
Use this type to get strings for
NWSMSD_MEDIA_LOCATION.objectType.

NWSMSD_VALUE_TYPE_RELATION (0x00000004)
Use this type to get strings for
NWSMSD_DEVICE_ID.deviceRelation.

NWSMSD_VALUE_TYPE_RESERVED (0x00000005)
Use this type to get strings for
NWSMSD_DEVICE_ID.reservedStatus or
NWSMSD_MEDIA_ID.reservedStatus.

NWSMSD_VALUE_TYPE_MODE (0x00000006)
Use this type to get strings for
NWSMSD_OBJECT_STATUS.objectMode (subjugation
mode).

NWSMSD_VALUE_TYPE_MOUNTED (0x00000007)
Use this type to get string for
NWSMSD_MEDIA_STATUS.mediaMounted.

NWSMSD_VALUE_TYPE_OWNER (0x00000008)
Use this type to get strings for
NWSMSD_MEDIA_ID.mediaOwner.

NWSMSD_VALUE_TYPE_CAPACITY (0x00000009)
Use this type to get strings for CAPACITY.factor.

NWSMSD_VALUE_TYPE_OPERATION (0x0000000A)
Use this type to get strings for
NWSMSD_OBJECT_STATUS.objectOperation.

Rev 2.0 2-59

Storage Device APIs

2-60 Rev 2.0

